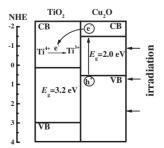
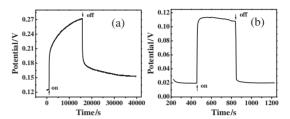
Visible-light Energy Storage by Ti³⁺ in TiO₂/Cu₂O Bilayer Film

Liangbin Xiong, ^{1,3} Minglu Ouyang, ¹ Lili Yan, ¹ Jialin Li, ¹ Mingqiang Qiu, ² and Ying Yu* ¹ Institute of Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, P. R. China ² College of Chemistry, Huazhong Normal University, Wuhan 430079, P. R. China ³ Department of Physics, Huanggang Normal University, Huanggang 438000, P. R. China


(Received August 25, 2009; CL-090778; E-mail: yuying@phy.ccnu.edu.cn)

 Ti^{3+} in TiO_2/Cu_2O bilayer film is demonstrated to show energy storage ability. UV–vis absorption spectrum and XPS characterization are carried out to confirm that there are Ti^{3+} ions formed and that more than $74\%~Ti^{4+}$ ions are reduced to Ti^{3+} ions after visible-light irradiation. More than $10^{-2}\,C\,cm^{-2}$ electrons are detected in the bilayer film as determined by H_2 evolution. This study provides a new way to harvest and store excess energy from solar light in the daytime.


Photoresponsive semiconductors are promising materials for the conversion of light energy to chemical or electrical energy, but they are unable to store energy and only function under light illumination. As a solution to this limitation, a few research groups in Japan have developed several semiconductor composite systems for energy storage, such as TiO₂/WO₃,¹ TiO₂/MoO₃,² and TiO₂/Ni(OH)₂.³ The energy can be stored either in reduced WO₃, MoO₃ or in oxidized Ni(OH)₂ under UV-light irradiation. The visible-light responsive Au–TiO₂ photocatalyst was also demonstrated to store energy in a reductive energy storage material, such as WO₃ or MoO₃.⁴ Recently, Yasomanee et al.⁵ have reported that TiO₂/Cu₂O composite film led to the continuous generation of H₂ from water splitting in the dark after UV–vis light irradiation stopped. This inspired us to believe that TiO₂/Cu₂O could be a good energy storage material.

In this investigation, ${\rm Ti^{3+}}$ in ${\rm TiO_2/Cu_2O}$ bilayer film is demonstrated to store energy under visible light. It is well known that the band gap of ${\rm TiO_2}$ is about 3.2 eV and that the conduction band of ${\rm TiO_2}$ is about $-0.2\,{\rm eV.^6}$ Cu₂O is a semiconductor with one of the highest conduction bands. The band gap of Cu₂O is about 2.0 eV, and the potential of its conduction band is $-1.4\,{\rm eV.^7}$

As shown in Scheme 1, the photogenerated electrons from the conduction band of Cu_2O were captured by Ti^{4+} ions in TiO_2 and Ti^{4+} ions were further reduced to Ti^{3+} ions. The Ti^{3+} ions have a long lifetime and bear the photogenerated electrons as a form of energy. The electron-transfer process is shown in eqs 1 and 2.

Scheme 1. Mechanism of energy storage for Ti^{3+} in TiO_2/Cu_2O bilayer film.

Figure 1. Photovoltage measured as a function of time for TiO₂/Cu₂O/FTO (a) and Cu₂O/FTO (b) electrodes.

$$Cu_2O + h\nu (\lambda > 400 \text{ nm}) \longrightarrow h_{\nu b}^+ + e_{cb}^-$$
 (1)

$$e_{ch}^- + Ti^{4+} \longrightarrow Ti^{3+}$$
 (2)

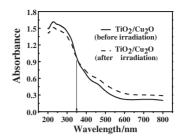
The preparation of TiO_2/Cu_2O bilayer film on fluorine-doped SnO_2 (FTO) conducting glass was conducted according to refs 8 and 9. The XRD patterns and SEM images (cross section for the bilayer film) of TiO_2 film, Cu_2O film, and TiO_2/Cu_2O bilayer film are shown in Figures S1 and S2 in Supporting Information, respectively. 10

Figure 1 shows the photovoltage measured as a function of time under visible-light irradiation for TiO₂/Cu₂O/FTO and Cu₂O/FTO electrodes. The figure was measured by using a PARSTAT 2273 electrochemical station (Princeton Applied Research) in $1.0\times 10^{-3}\,M$ air-saturated aqueous Na₂SO₄ solution with a three-electrode system (TiO₂/Cu₂O/FTO and Cu₂O/FTO electrode as working electrodes, platinum wire, and saturated calomel electrode as counter and reference electrode, respectively). The light source was a halogen lamp (300 W) with an optical filter ($\lambda \leq 420\,\text{nm}$).

It can be seen that the potential for both of the two electrodes shifted positively under the same irradiation. The positive potential shift may be due to holes generated on Cu_2O , which is one of p-type semiconductors. As TiO_2 has no response to visible light, the photopotential of $\text{TiO}_2/\text{Cu}_2\text{O}$ bilayer film almost results from Cu_2O . This result is similar to the report in ref 5. The net positive photovoltage comes from the interfacial potential difference of electrostatic double layer formed between the holes on the surface of Cu_2O and the SO_4^{2-} layer in electrolyte.

It can also be seen that the potential for the Cu_2O/FTO electrode jumped to the maximum instantly and remain unchanged. It indicates that the generation and recombination of e^--h^+ pairs in Cu_2O established a dynamic equilibrium. However, it took the $TiO_2/Cu_2O/FTO$ electrode about 4 h to reach its maximum. It indicates that there was a process for the accumulation of holes in $TiO_2/Cu_2O/FTO$ electrode. As we know, both photogenerated electrons and holes were produced in Cu_2O under the irradiation. So, there was a process for the accumulation of electrons in $TiO_2/Cu_2O/FTO$ electrode, too. The photogenerated electrons in Cu_2O have much energy due to the absorption of visible

light. Thus, when these electrons are transferred to the conduction band of ${\rm TiO_2}$ and trapped by ${\rm Ti^{4+}}$, they are seen as ${\rm Ti^{3+}}$ and are stored as a form of energy in the bilayer film. The holes still stay in ${\rm Cu_2O}$. The longer the irradiation time, the more electrons were generated by ${\rm Cu_2O}$ and injected into ${\rm TiO_2}$ and thereafter the more energy stored. This process did not stop until the potential of the ${\rm TiO_2/Cu_2O}$ electrode reached the maximum.


After the irradiation was removed, the potential for both of these electrodes shifted negatively. The potential for Cu_2O/FTO electrode dropped instantly to the minimum, the original potential before the irradiation. It indicates that the photogenerated electrons and holes are recombined completely. However, it took $TiO_2/Cu_2O/FTO$ electrode a long time (above 7 h) to reach its minimum, which was still 20 mV higher than the original potential before the irradiation. It indicates that there are still holes in $TiO_2/Cu_2O/FTO$ electrode and that the photogenerated electrons and holes may not be recombined completely because a little amount of electrons are still trapped by Ti^{3+} .

Additionally, under the same irradiation, the potential increment for $TiO_2/Cu_2O/FTO$ electrode was $140\,mV$, much higher than $80\,mV$ for Cu_2O/FTO electrode. It demonstrates that much more photogenerated holes and electrons were present in the bilayer film. The better photoelectric properties of the bilayer film than that of Cu_2O film suggests that the bilayer films have improved abilities for charge separation and charge carrier lifetime and can store energy.

To confirm the existence of Ti^{3+} supporting the above mechanism, XPS measurement was carried out to obtain surface information of the bilayer film to prove the presence of Ti^{3+} . The analytic result is shown in Figure S3¹⁰ and in accordance with the reported data.¹¹

UV–vis diffuse reflectance measurement was further carried out to identify the conversion of Ti^{4+} to Ti^{3+} in the bilayer film after the irradiation. The data are shown in Figure 2. The absorbance of the bilayer film became weaker in the short wavelength range (200 $\leq \lambda \leq$ 350 nm) while becoming stronger in the long wavelength range (350 $< \lambda \leq$ 800 nm) after the irradiation. It is confirmed based on the above data that Ti^{3+} ions were produced in the bilayer film after the irradiation. Because Ti^{4+} has no response to visible light while Ti^{3+} does, 12 the presence of Ti^{3+} ions leads to the weaker absorbance of bilayer film in the short wavelength range while stronger in the long wavelength range. It was found that the transparent TiO_2 film turned blue under the irradiation as shown in Figure S4. 10 The phenomenon is similar to the J. P. Yasomanee' report 5 and also demonstrates the presence of Ti^{3+} .

As for the application of the energy stored in Ti^{3+} , a preliminary attempt was taken to reduce H^+ for the formation of H_2 from water splitting. A home-made Pyrex glass reactor and gas chromatograph instrument (GC-2014, SHIMADZU) were used for photocatalytic H_2 evolution and gas analysis, respectively. Figure S5¹⁰ shows the curve of H_2 yield as a function of time, it can be found that H_2 evolution was still noticeable after the irradiation stopped until the third hour. This result is also similar to the J. P. Yasomanee' report. We believe that the electrons trapped in Ti^{3+} ions as stored energy lead to evolve H_2 from H_2O in the dark. According to Figure S5, 10 we can see that

Figure 2. UV–vis diffuse reflectance spectra of TiO₂/Cu₂O bilayer film before (solid line) and after irradiation (dashed line).

more than 10^{-2} C cm⁻² electrons were stored in TiO₂/Cu₂O film under 4 h visible-light irradiation.

In summary, Ti^{3+} in TiO_2/Cu_2O bilayer film has energy storage ability under visible-light irradiation. More than 74% Ti^{4+} ions are reduced to Ti^{3+} ions after 6 h visible-light irradiation. At least 10^{-2} C cm⁻² electrons are detected in the bilayer film by H_2 evolution. The system may be potentially applied to portable devices charged at daytime and used at night without extra storage cells.

The work was financially supported by National Natural Science Foundation of China (Nos. 90510012, 20973070, and 50804035), the Key Project of Chinese Ministry of Eduation (No. 109116) and National Basic Research Program of China (No. 2009CB939704).

References and Notes

- a) T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko,
 A. Fujishima, *Langmuir* 2002, 18, 7777. b) P.
 Ngaotrakanwiwat, T. Tatsuma, *J. Electroanal. Chem.* 2004, 573, 263.
- 2 Y. Takahashi, P. Ngaotrakanwiwat, T. Tatsuma, *Electro-chim. Acta* **2004**, *49*, 2025.
- 3 Y. Takahashi, T. Tatsuma, Langmuir 2005, 21, 12357.
- 4 Y. Takahashi, T. Tatsuma, Electrochem. Commun. 2008, 10, 1404.
- 5 J. P. Yasomanee, J. Bandara, Sol. Energy Mater. Sol. Cells 2008, 92, 348.
- 6 M. Grätzel, Nature 2001, 414, 338.
- 7 L. S. Zhang, J. L. Li, Z. G. Chen, Y. W. Tang, Y. Yu, Appl. Catal., A 2006, 299, 292.
- 8 J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, *J. Phys. Chem. Solids* **2003**, *64*, 615.
- M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, *Appl. Surf. Sci.* 1999, 150, 143.
- 10 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.
- 11 Y.-G. Zhang, L.-L. Ma, J.-L. Li, Y. Yu, Environ. Sci. Technol. 2007, 41, 6264.
- 12 a) A. I. Kuznetsov, O. Kameneva, A. Alexandrov, N. Bityurin, K. Chhor, A. Kanaev, *J. Phys. Chem. B* **2006**, *110*, 435. b) A. I. Kuznetsov, O. Kameneva, L. Rozes, C. Sanchez, N. Bityurin, A. Kanaev, *Chem. Phys. Lett.* **2006**, 429, 523.